The velocity of a wave is given by v=Tμ+ax2v = \sqrt{\frac{T}{\mu}} + ax^2v=μT+ax2, where TTT is tension, μ\muμ is linear density, and xxx is displacement. What are the dimensions of aaa?
[LT⁻¹]
[L⁻¹T⁻¹]
[L²T⁻¹]
[LT⁻²]
Related Questions
The unit of permittivity of free space ε0{\varepsilon _0}ε0 is
C²/N⋅m²
F/m
N⋅m²/C²
H/m
SI unit of permittivity is
C2m2N2{{\rm{C}}^2}{{\rm{m}}^2}{{\rm{N}}^2}C2m2N2
C2m−2N−1{{\rm{C}}^2}{{\rm{m}}^{ - 2}}{{\rm{N}}^{ - 1}}C2m−2N−1
C2m2N−1{{\rm{C}}^2}{{\rm{m}}^2}{{\rm{N}}^{ - 1}}C2m2N−1
C−1m2N−2{{\rm{C}}^{ - 1}}{{\rm{m}}^2}{{\rm{N}}^{ - 2}}C−1m2N−2
Coulomb/newton-metre
Newton−metre2/coulomb2Newton - metr{e^2}/coulom{b^2}Newton−metre2/coulomb2
Coulomb2/(newton−metre)2Coulom{b^2}/{\left( {newton - metre} \right)^2}Coulomb2/(newton−metre)2
Coulomb2/newton−metre2Coulom{b^2}/newton - metr{e^2}Coulomb2/newton−metre2