1.

    A projectile is thrown with a speed u at an angle hetaheta to the horizontal. The radius of curvature of its trajectory when the velocity vector of the projectile makes an angle α\alpha with the horizontal is

    A

    u2cos2αgcos2  heta\frac{{{u^2}{{\cos }^2}{\rm{\alpha }}}}{{{\rm{gco}}{{\rm{s}}^2}{\rm{\;heta }}}}

    B

    2u2cos2αgcos2  heta\frac{{2{u^2}{{\cos }^2}{\rm{\alpha }}}}{{{\rm{gco}}{{\rm{s}}^2}{\rm{\;heta }}}}

    C

    u2cos2hetagcos3  α\frac{{{u^2}{{\cos }^2}{\rm{heta }}}}{{{\rm{gco}}{{\rm{s}}^3}{\rm{\;\alpha }}}}

    D

    u2cos2hetagcos2  α\frac{{{u^2}{{\cos }^2}{\rm{heta }}}}{{{\rm{gco}}{{\rm{s}}^2}{\rm{\;\alpha }}}}

    Question Tags

    Related Questions

    7.

    A ball is projected with velocity u at an angle α with horizontal plane. Its speed when it makes an angle β\beta with the horizontal is

    A

    ucosαu\cos {\rm{\alpha }}

    B

    ucosβ\frac{u}{{\cos {\rm{\beta }}}}

    C

    ucosαcosβu\cos {\rm{\alpha }}\cos {\rm{\beta }}

    D

    ucosαcosβ\frac{{u\cos {\rm{\alpha }}}}{{\cos {\rm{\beta }}}}

    Question Tags

    10.

    A stone is thrown at an angle hetaheta to the horizontal reaches a maximum height H. Then the time of flight of stone will be

    A

    2Hg\sqrt {\frac{{2H}}{g}}

    B

    22Hg2\sqrt {\frac{{2H}}{g}}

    C

    22Hsinhetag\frac{{2\sqrt {2H\sin heta } }}{g}

    D

    2Hsinhetag\frac{{\sqrt {2H\sin heta } }}{g}

    Question Tags

    company logo