If A⃗imesB⃗=C⃗\vec{A} imes \vec{B} = \vec{C}AimesB=C, which of the following is always true?
C⃗\vec{C}C is parallel to both A⃗\vec{A}A and B⃗\vec{B}B
C⃗\vec{C}C is perpendicular to both A⃗\vec{A}A and B⃗\vec{B}B
C⃗\vec{C}C is coplanar with A⃗\vec{A}A and B⃗\vec{B}B
C⃗\vec{C}C is equal to A⃗+B⃗\vec{A} + \vec{B}A+B
Related Questions
If A⃗=B⃗,{\rm{\vec A}} = {\rm{\vec B}},A=B, then which of the following is not correct
A^=B^\hat A = \hat BA^=B^
A^.B^=AB\hat A.\hat B = {\rm{AB}}A^.B^=AB
∣A⃗∣=∣B⃗∣\left| {{\rm{\vec A}}} \right| = \left| {{\rm{\vec B}}} \right|A=B
AB^∣ ∣ BA^{\rm{A\hat B}}\left| {\rm{\;}} \right|{\rm{\;B\hat A}}AB^∣∣BA^
The resultant of two vector of equal magnitude is twice of magnitude of either of the vectors the angle between them is
600{60^0}600
1200{120^0}1200
00{0^0}00
1800{180^0}1800