A solution is prepared by dissolving 2.5g of a non-volatile solute in 100g of water. The vapor pressure of the solution is found to be 22.87 Torr at . If the vapor pressure of pure water is 23.76 Torr at the same temperature, what is the molar mass of the solute (in g/mol)?
60
120
30
90
Related Questions
What is the molality of a solution where the mole fraction of the solute is 0.02 and the solvent is water?
1.13 m
0.02 m
0.98 m
55.51 m
A solution is prepared by dissolving 20g of a non-volatile solute in 180g of water. If the vapor pressure of pure water at this temperature is 23.76 mmHg and the solution exhibits a vapor pressure of 23.52 mmHg, what is the molar mass of the solute? (Molar mass of water = 18 g/mol)
99 g/mol
198 g/mol
297 g/mol
396 g/mol
A mixture of two volatile liquids A and B follows Raoult's law. At a certain temperature, the partial pressures of A and B above the solution are 200 mmHg and 300 mmHg respectively. If the mole fraction of A in the liquid phase is 0.4, what is the vapor pressure of pure A at this temperature?
500 mmHg
600 mmHg
750 mmHg
1000 mmHg
In a solution containing 0.1 moles of a solute and 5 moles of solvent, what is the mole fraction of the solvent?
0.02
0.10
0.98
5.0
100g of a liquid A (molar mass 140 g/mol) and 100g of liquid B (molar mass 70 g/mol) form an ideal solution. What is the mole fraction of B in the vapor phase? (Assume mmHg and mmHg)
1/3
2/3
1/2
3/4
A solution is prepared by dissolving 10 g of sucrose () in 200 g of water. What is the mole fraction of sucrose?
0.0026
0.0292
0.0500
0.997
What is the mole fraction of the solute in a 1.00 m aqueous solution of glucose?
0.0177
0.0180
0.982
1.00
A 0.5 molal aqueous solution of urea () is prepared. What is the mole fraction of urea?
0.0089
0.0090
0.50
0.99
Henry's law constant for CO in water at 298K is 1.67 x 10 Pa. Calculate the mass of CO dissolved in 500 mL of soda water when packed under 2.5 atm CO pressure at 298K. (1 atm = 1.013 x 10 Pa, molar mass of CO = 44 g/mol)
1.85 g
0.83 g
3.70 g
0.42 g