Related Questions

    1.

    The expression for rate constant of a first order chemical reaction is

    A

    k=1txa(ax)k = \frac{1}{t} \cdot \frac{x}{{a\left( {a - x} \right)}}

    B

    k=2.303tlog10a(ax)k = \frac{{2.303}}{t}{\log _{10}}\frac{a}{{\left( {a - x} \right)}}

    C

    k=xtk = \frac{x}{t}

    D

    k=12t[1(ax)21a2]k = \frac{1}{{2t}}\left[ {\frac{1}{{{{\left( {a - x} \right)}^2}}} - \frac{1}{{{a^2}}}} \right]

    Question Tags

    3.

    For a gaseous reaction, the units of rate of rate of reaction are

    A

    L  atm  s1{\rm{L }}\;{\rm{atm}}\;{{\rm{s}}^{ - 1}}

    B

    atm  s1{\rm{atm}}\;{{\rm{s}}^{ - 1}}

    C

    atm  mol1  s1{\rm{atm}}\;{\rm{mo}}{{\rm{l}}^{ - 1}}\;{{\rm{s}}^{ - 1}}

    D

    mol  s1{\rm{mol}}\;{{\rm{s}}^{ - 1}}

    Question Tags

    5.

    A reaction has a rate constant 'k' at temperature T₁ and k' at T₂ (T₂ > T₁). If the activation energy is Ea, which expression correctly relates k, k', T₁, and T₂ according to the Arrhenius equation?

    A

    ln(k/k)=(Ea/R)((1/T1)(1/T2))ln(k'/k) = (Ea/R)((1/T_1) - (1/T_2))

    B

    ln(k/k)=(Ea/R)((1/T2)(1/T1))ln(k'/k) = (Ea/R)((1/T_2) - (1/T_1))

    C

    ln(k/k)=(Ea/R)((1/T1)(1/T2))ln(k/k') = (Ea/R)((1/T_1) - (1/T_2))

    D

    k/k=exp((Ea/R)((1/T1)(1/T2)))k'/k = exp((Ea/R)((1/T_1) - (1/T_2)))

    Question Tags

    9.

    In Arrhenius plot intercept is equal to

    A

    Ea/R - {E_a}/R

    B

    ln  A\ln \;A

    C

    ln  k\ln \;k

    D

    log10  a{\log _{10}}\;a

    Question Tags

    company logo