Related Questions

    1.

    The Rydberg constant RR for hydrogen is

    A

    R=βˆ’(14πΡ0).2Ο€2me2ch2R = - \left( {\frac{1}{{4\pi {\varepsilon _0}}}} \right).\frac{{2{\pi ^2}m{e^2}}}{{c{h^2}}}

    B

    R=(14πΡ0).2Ο€2me4ch2R = \left( {\frac{1}{{4\pi {\varepsilon _0}}}} \right).\frac{{2{\pi ^2}m{e^4}}}{{c{h^2}}}

    C

    R=(14πΡ0)2.2Ο€2me4c2h2R = {\left( {\frac{1}{{4\pi {\varepsilon _0}}}} \right)^2}.\frac{{2{\pi ^2}m{e^4}}}{{{c^2}{h^2}}}

    D

    R=(14πΡ0)2.2Ο€2me4ch3R = {\left( {\frac{1}{{4\pi {\varepsilon _0}}}} \right)^2}.\frac{{2{\pi ^2}m{e^4}}}{{c{h^3}}}

    Question Tags

    6.

    If the wavelength of the first line of the Balmer series of hydrogen is 6561 extA∘,6561 \, \mathop {ext{A}}\limits^ \circ , the wavelength of the second line of the series should be

    A

    13122 extA∘13122\,\mathop {ext{A}}\limits^ \circ

    B

    3280 extA∘3280\,\mathop {ext{A}}\limits^ \circ

    C

    4860 extA∘4860\,\mathop {ext{A}}\limits^ \circ

    D

    2187 extA∘2187\,\mathop {ext{A}}\limits^ \circ

    Question Tags

    company logo