Related Questions

    5.

    A diatomic molecule is made of two masses m1{m_1} and m2{m_2} which are separated by a distance rr. If we calculate its rotational energy by applying Bohr’s rule of angular momentum quantization, its energy will be given by (nn is an integer)

    A

    (m1+m2)2n2h22 m12 m22r2\frac{{{{\left( {{m_1} + {m_2}} \right)}^2}{n^2}{h^2}}}{{2\,m_1^2\,m_2^2{r^2}}}

    B

    n2h22(m1+m2)r2\frac{{{n^2}{h^2}}}{{2\left( {{m_1} + {m_2}} \right){r^2}}}

    C

    2 n2h2(m1+m2)r2\frac{{2\,{n^2}{h^2}}}{{\left( {{m_1} + {m_2}} \right){r^2}}}

    D

    (m1+m2)n2h22 m1 m2r2\frac{{{{\left( {{m_1} + {m_2}} \right)}^{}}{n^2}{h^2}}}{{2\,{m_1}\,{m_2}{r^2}}}

    Question Tags

    7.

    The total energy of an electron in an atom in an orbit is βˆ’3.4eV{\rm{ - 3}}{\rm{.4eV}}. Its kinetic and potential energies are, respectively:

    A

    βˆ’3.4eV,βˆ’3.4eV - {\rm{3}}{\rm{.4eV,}} - {\rm{3}}{\rm{.4eV}}

    B

    βˆ’3.4eV,βˆ’6.8eV - {\rm{3}}{\rm{.4eV,}} - {\rm{6}}{\rm{.8eV}}

    C

    3.4eV,βˆ’6.8eV{\rm{3}}{\rm{.4eV,}} - {\rm{6}}{\rm{.8eV}}

    D

    3.4eV, 3.4eV{\rm{3}}{\rm{.4eV,}}\,{\rm{3}}{\rm{.4eV}}

    Question Tags

    company logo