1.

    A block of mass mm is placed on a rough inclined plane of angle hetaheta. The coefficient of static friction is μs\mu_s. A horizontal force FF is applied to the block. What is the minimum value of FF required to prevent the block from sliding down the plane?

    A

    mg(sinhetaμscoshetacosheta+μssinheta)mg(\frac{sinheta - \mu_s cosheta}{cosheta + \mu_s sinheta})

    B

    mg(coshetaμssinhetasinheta+μscosheta)mg(\frac{cosheta - \mu_s sinheta}{sinheta + \mu_s cosheta})

    C

    mg(sinheta+μscoshetacoshetaμssinheta)mg(\frac{sinheta + \mu_s cosheta}{cosheta - \mu_s sinheta})

    D

    mg(cosheta+μssinhetasinhetaμscosheta)mg(\frac{cosheta + \mu_s sinheta}{sinheta - \mu_s cosheta})

    Question Tags

    Related Questions

    5.

    A block is projected up a rough inclined plane with initial speed uu. The coefficient of kinetic friction is μk\mu_k. The block travels a distance ss up the incline before coming to rest. What is the angle of inclination hetaheta of the plane?

    A

    tan1(u22gsμk)tan^{-1}(\frac{u^2}{2gs} - \mu_k)

    B

    tan1(2gsu2μk)tan^{-1}(\frac{2gs}{u^2} - \mu_k)

    C

    tan1(u22gs+μk)tan^{-1}(\frac{u^2}{2gs} + \mu_k)

    D

    tan1(2gsu2+μk)tan^{-1}(\frac{2gs}{u^2} + \mu_k)

    Question Tags

    company logo