Related Questions

    8.

    A solid sphere of volume V and density ρ{\rm{\rho }} floats at the interface of two immiscible liquids of densities ρ1{{\rm{\rho }}_1}and ρ2{{\rm{\rho }}_2}respectively. If ρ1<ρ<ρ2,{{\rm{\rho }}_1} < \rho < {\rho _{2,}} then the ratio of volume of the parts of the sphere in upper and lower liquid is

    A

    Οβˆ’Ο2ρ2βˆ’Ο\frac{{{\rm{\rho }} - {{\rm{\rho }}_2}}}{{{{\rm{\rho }}_2} - {\rm{\rho }}}}

    B

    ρ2βˆ’ΟΟβˆ’Ο1\frac{{{{\rm{\rho }}_2} - {\rm{\rho }}}}{{{\rm{\rho }} - {{\rm{\rho }}_1}}}

    C

    ρ+ρ1ρ+ρ2\frac{{{\rm{\rho }} + {{\rm{\rho }}_1}}}{{{\rm{\rho }} + {{\rm{\rho }}_2}}}

    D

    ρ+ρ2ρ+ρ1\frac{{{\rm{\rho }} + {{\rm{\rho }}_2}}}{{{\rm{\rho }} + {{\rm{\rho }}_1}}}

    Question Tags

    company logo