\mathop {{\rm{ }}A}\limits^ - = \mathop {{\rm{ }}B}\limits^ - + \mathop {{\rm{ }}C}\limits^ - and the magnitudes of \mathop {{\rm{ }}A}\limits^ - ,\mathop {{\rm{ }}B}\limits^ - ,\mathop {{\rm{ }}C}\limits^ - are 5, 4 and 3 units respectively, the angle between \mathop {{\rm{ }}A}\limits^ - \mathop {{\rm{ }}C}\limits^ - is:
${{\mathop{\rm Cos}
olimits} ^{ - 1}}\left( {\frac{3}{5}} \right)$
${{\mathop{\rm Cos}
olimits} ^{ - 1}}\left( {\frac{4}{5}} \right)$
Related Questions
\mathop {{\rm{ }}A}\limits^ - = \mathop {{\rm{ }}B}\limits^ - + \mathop {{\rm{ }}C}\limits^ - and the magnitudes of \mathop {{\rm{ }}A}\limits^ - ,\mathop {{\rm{ }}B}\limits^ - ,\mathop {{\rm{ }}C}\limits^ - are 5, 4 and 3 units respectively, the angle between \mathop {{\rm{ }}A}\limits^ - \mathop {{\rm{ }}C}\limits^ - is:
${{\mathop{\rm Cos}
olimits} ^{ - 1}}\left( {\frac{3}{5}} \right)$
${{\mathop{\rm Cos}
olimits} ^{ - 1}}\left( {\frac{4}{5}} \right)$
What vector must be added to the sum of two vectors so that the resultant is a unit vector along Z-axis.
A child travelling in a train throws a ball outside with a speed V. According to a child who is standing on the ground, the speed of the ball is
Same as V
Greater than V
Less than V
None of these
If the vector are parallel to each other, the magnitude of is
10
15
If is a unit vector, then the value of c is
The angular velocity of a rotating body is . The linear velocity of the body whose position vector is
\mathop {{\rm{ }}A}\limits^ - = \mathop {{\rm{ }}B}\limits^ - + \mathop {{\rm{ }}C}\limits^ - and the magnitudes of \mathop {{\rm{ }}A}\limits^ - ,\mathop {{\rm{ }}B}\limits^ - ,\mathop {{\rm{ }}C}\limits^ - are 5, 4 and 3 units respectively, the angle between \mathop {{\rm{ }}A}\limits^ - \mathop {{\rm{ }}C}\limits^ - is:
${{\mathop{\rm Cos}
olimits} ^{ - 1}}\left( {\frac{3}{5}} \right)$
${{\mathop{\rm Cos}
olimits} ^{ - 1}}\left( {\frac{4}{5}} \right)$
\mathop {{\rm{ }}A}\limits^ - = \mathop {{\rm{ }}B}\limits^ - + \mathop {{\rm{ }}C}\limits^ - and the magnitudes of \mathop {{\rm{ }}A}\limits^ - ,\mathop {{\rm{ }}B}\limits^ - ,\mathop {{\rm{ }}C}\limits^ - are 5, 4 and 3 units respectively, the angle between \mathop {{\rm{ }}A}\limits^ - \mathop {{\rm{ }}C}\limits^ - is:
${{\mathop{\rm Cos}
olimits} ^{ - 1}}\left( {\frac{3}{5}} \right)$
${{\mathop{\rm Cos}
olimits} ^{ - 1}}\left( {\frac{4}{5}} \right)$