Related Questions

    2.

    A block is placed on a frictionless horizontal table. The mass of the block is m and springs are attached on either side with force constants k1{{k_1}} and k2{{k_2}}. If the block is displaced a little and left to oscillate, then the angular frequency of oscillation will be

    A

    (K1+K2m)1/2{\left( {\frac{{{K_1} + {K_2}}}{m}} \right)^{1/2}}

    B

    [K1K2m(K1+K2)]1/2{\left[ {\frac{{{K_1}{K_2}}}{{m\left( {{K_1} + {K_2}} \right)}}} \right]^{1/2}}

    C

    [K1K2(K1βˆ’K2)m]1/2{\left[ {\frac{{{K_1}{K_2}}}{{\left( {{K_1} - {K_2}} \right)m}}} \right]^{1/2}}

    D

    [K12+K22(K1+K2)m]1/2{\left[ {\frac{{K_1^2 + K_2^2}}{{\left( {{K_1} + {K_2}} \right)m}}} \right]^{1/2}}

    Question Tags

    company logo