Related Questions

    2.

    The physical quantities not having same dimensions are

    A

    Torque and work

    B

    Momentum and Planck’s constant

    C

    Stress and Young’s modules

    D

    Speed and (μ0ε0)1/2{\left( {{{\rm{\mu }}_0}{{\rm{\varepsilon }}_0}} \right)^{ - 1/2}}

    Question Tags

    3.

    The dimensions of universal gravitational constant are

    A

    M2L2T2{M^{ - 2}}{L^2}{T^{ - 2}}

    B

    M1L3T2{M^{ - 1}}{L^3}{T^{ - 2}}

    C

    ML1T2M{L^{ - 1}}{T^{ - 2}}

    D

    ML2T2M{L^2}{T^{ - 2}}

    Question Tags

    5.

    The dimensions of emf in MKS is

    A

    [ML1T2Q2]\left[ {{\rm{M}}{{\rm{L}}^{ - 1}}{{\rm{T}}^{ - 2}}{{\rm{Q}}^{ - 2}}} \right]

    B

    [ML2T2Q2]\left[ {{\rm{M}}{{\rm{L}}^{ - 2}}{{\rm{T}}^{ - 2}}{{\rm{Q}}^{ - 2}}} \right]

    C

    [MLT2Q1]\left[ {{\rm{ML}}{{\rm{T}}^{ - 2}}{{\rm{Q}}^{ - 1}}} \right]

    D

    [ML2T2Q1]\left[ {{\rm{M}}{{\rm{L}}^2}{{\rm{T}}^{ - 2}}{{\rm{Q}}^{ - 1}}} \right]

    Question Tags

    8.

    The dimensional formula of 1ε0e2hc\frac{1}{{{\varepsilon _0}}}\frac{{{e^2}}}{{hc}} is

    A

    [M0L0T0A0]\left[ {{{\rm{M}}^0}{{\rm{L}}^0}{{\rm{T}}^0}{{\rm{A}}^0}} \right]

    B

    [M1L3T2A]\left[ {{{\rm{M}}^{ - 1}}{{\rm{L}}^3}{{\rm{T}}^2}{\rm{A}}} \right]

    C

    [ML3T4A2]\left[ {{\rm{M}}{{\rm{L}}^3}{{\rm{T}}^{ - 4}}{{\rm{A}}^{ - 2}}} \right]

    D

    [M1L3T4]\left[ {{{\rm{M}}^{ - 1}}{{\rm{L}}^{ - 3}}{{\rm{T}}^4}} \right]

    Question Tags

    10.

    If force is proportional to square of velocity, then the dimensions of proportionality constant are

    A

    [ML1T]\left[ {{\rm{M}}{{\rm{L}}^{ - 1}}{\rm{T}}} \right]

    B

    [ML1T0]\left[ {{\rm{M}}{{\rm{L}}^{ - 1}}{{\rm{T}}^0}} \right]

    C

    [MLT0]\left[ {{\rm{ML}}{{\rm{T}}^0}} \right]

    D

    [M0LT1]\left[ {{{\rm{M}}^0}{\rm{L}}{{\rm{T}}^{ - 1}}} \right]

    Question Tags

    company logo