The ionization energy of hydrogen is 13.6 eV. Express this energy in joules per mole using the following conversions: 1 eV = 1.602imes10−191.602 imes 10^{-19}1.602imes10−19 J and Avogadro's number = 6.022imes10236.022 imes 10^{23}6.022imes1023 mol−1mol^{-1}mol−1.
1.31imes1031.31 imes 10^31.31imes103 J/mol
2.18imes10−202.18 imes 10^{-20}2.18imes10−20 J/mol
1.31imes1061.31 imes 10^61.31imes106 J/mol
8.21imes1058.21 imes 10^58.21imes105 J/mol
Related Questions
The dimensional formula for the magnetic field is
[MT−2A−1]\left[ {{\rm{M}}{{\rm{T}}^{ - 2}}{{\rm{A}}^{ - 1}}} \right][MT−2A−1]
[ML2T−1A−2]\left[ {{\rm{M}}{{\rm{L}}^2}{{\rm{T}}^{ - 1}}{{\rm{A}}^{ - 2}}} \right][ML2T−1A−2]
[MT−2A−2]\left[ {{\rm{M}}{{\rm{T}}^{ - 2}}{{\rm{A}}^{ - 2}}} \right][MT−2A−2]
[MT−1A−2]\left[ {{\rm{M}}{{\rm{T}}^{ - 1}}{{\rm{A}}^{ - 2}}} \right][MT−1A−2]
A physical quantity of the dimensions of length that can be formed out of c, G and is [c is velocity of light, G is universal constant of gravitation and e is charge]
c2[Ge24πε0]1/2{c^2}{\left[ {G\frac{{{e^2}}}{{4\pi {\varepsilon _0}}}} \right]^{1/2}}c2[G4πε0e2]1/2
1c2[e2G4πε0]1/2\frac{1}{{{c^2}}}{\left[ {\frac{{{e^2}}}{{G4\pi {\varepsilon _0}}}} \right]^{1/2}}c21[G4πε0e2]1/2
1cGe24πε0\frac{1}{c}G\frac{{{e^2}}}{{4\pi {\varepsilon _0}}}c1G4πε0e2
1c2[Ge24πε0]1/2\frac{1}{{{c^2}}}{\left[ {G\frac{{{e^2}}}{{4\pi {\varepsilon _0}}}} \right]^{1/2}}c21[G4πε0e2]1/2