The ionization energy of hydrogen is 13.6 eV. Express this energy in joules per mole using the following conversions: 1 eV = 1.602imes10−191.602 imes 10^{-19}1.602imes10−19 J and Avogadro's number = 6.022imes10236.022 imes 10^{23}6.022imes1023 mol−1mol^{-1}mol−1.
1.31imes1031.31 imes 10^31.31imes103 J/mol
2.18imes10−202.18 imes 10^{-20}2.18imes10−20 J/mol
1.31imes1061.31 imes 10^61.31imes106 J/mol
8.21imes1058.21 imes 10^58.21imes105 J/mol
Related Questions
The unit of expression μ0ε0{{\rm{\mu }}_0}{{\rm{\varepsilon }}_0}μ0ε0 are
ms−1{\rm{m}}{{\rm{s}}^{ - 1}}ms−1
m2s−2{{\rm{m}}^2}{{\rm{s}}^{ - 2}}m2s−2
s2m−2{{\rm{s}}^2}{{\rm{m}}^{ - 2}}s2m−2
sm−1{\rm{s}}{{\rm{m}}^{ - 1}}sm−1
The dimensional formula of 1ε0e2hc\frac{1}{{{\varepsilon _0}}}\frac{{{e^2}}}{{hc}}ε01hce2 is
[M0L0T0A0]\left[ {{{\rm{M}}^0}{{\rm{L}}^0}{{\rm{T}}^0}{{\rm{A}}^0}} \right][M0L0T0A0]
[M−1L3T2A]\left[ {{{\rm{M}}^{ - 1}}{{\rm{L}}^3}{{\rm{T}}^2}{\rm{A}}} \right][M−1L3T2A]
[ML3T−4A−2]\left[ {{\rm{M}}{{\rm{L}}^3}{{\rm{T}}^{ - 4}}{{\rm{A}}^{ - 2}}} \right][ML3T−4A−2]
[M−1L−3T4]\left[ {{{\rm{M}}^{ - 1}}{{\rm{L}}^{ - 3}}{{\rm{T}}^4}} \right][M−1L−3T4]
The constant of proportionality 14πε0 \frac{1}{{4{\rm{\pi }}{{\rm{\varepsilon }}_0}}}\;4πε01 in Coulomb’s law has the following units
C−2Nm2{{\rm{C}}^{ - 2}}{\rm{N}}{{\rm{m}}^2}C−2Nm2
C2N−1m−2{{\rm{C}}^2}{{\rm{N}}^{ - 1}}{{\rm{m}}^{ - 2}}C2N−1m−2
C2Nm2{{\rm{C}}^2}{\rm{N}}{{\rm{m}}^2}C2Nm2
C−2N−1m−2{{\rm{C}}^{ - 2}}{{\rm{N}}^{ - 1}}{{\rm{m}}^{ - 2}}C−2N−1m−2
What are the units of K=1/4πε0K = 1/4\pi {\varepsilon _0}K=1/4πε0
C2N−1m−2{C^2}{N^{ - 1}}{m^{ - 2}}C2N−1m−2
Nm2C−2N{m^2}{C^{ - 2}}Nm2C−2
Nm2C2N{m^2}{C^2}Nm2C2
UnitlessUnitlessUnitless