1.

    The dimensional formula for Boltzmann’s constant is

    A

    [ML2T2heta1]\left[ {M{L^2}{T^{ - 2}}{heta ^{ - 1}}} \right]

    B

    [ML2T2]\left[ {M{L^2}{T^{ - 2}}} \right]

    C

    [ML0T2heta1]\left[ {M{L^0}{T^{ - 2}}{heta ^{ - 1}}} \right]

    D

    [ML2T1heta1]\left[ {M{L^{ - 2}}{T^{ - 1}}{heta ^{ - 1}}} \right]

    Question Tags

    Related Questions

    1.

    The dimensional formula for entropy is

    A

    [MLT2K1]\left[ {{\rm{ML}}{{\rm{T}}^{ - 2}}{{\rm{K}}^{ - 1}}} \right]

    B

    [ML2T2]\left[ {{\rm{M}}{{\rm{L}}^2}{{\rm{T}}^{ - 2}}} \right]

    C

    [ML2T2K1]\left[ {{\rm{M}}{{\rm{L}}^2}{{\rm{T}}^{ - 2}}{{\rm{K}}^{ - 1}}} \right]

    D

    [ML2T2K1]\left[ {M{L^{ - 2}}{T^{ - 2}}{K^{ - 1}}} \right]

    Question Tags

    2.

    The dimensional formula for Boltzmann’s constant is

    A

    [ML2T2heta1]\left[ {M{L^2}{T^{ - 2}}{heta ^{ - 1}}} \right]

    B

    [ML2T2]\left[ {M{L^2}{T^{ - 2}}} \right]

    C

    [ML0T2heta1]\left[ {M{L^0}{T^{ - 2}}{heta ^{ - 1}}} \right]

    D

    [ML2T1heta1]\left[ {M{L^{ - 2}}{T^{ - 1}}{heta ^{ - 1}}} \right]

    Question Tags

    company logo