1.

    Inductance L can be dimensionally represented as

    A

    ML2T2A2M{L^2}{T^{ - 2}}{A^{ - 2}}

    B

    ML2T4A3M{L^2}{T^{ - 4}}{A^{ - 3}}

    C

    ML2T2A2M{L^{ - 2}}{T^{ - 2}}{A^{ - 2}}

    D

    ML2T4A3M{L^2}{T^4}{A^3}

    Question Tags

    Related Questions

    2.

    The constant of proportionality 14πε0  \frac{1}{{4{\rm{\pi }}{{\rm{\varepsilon }}_0}}}\; in Coulomb’s law has the following units

    A

    C2Nm2{{\rm{C}}^{ - 2}}{\rm{N}}{{\rm{m}}^2}

    B

    C2N1m2{{\rm{C}}^2}{{\rm{N}}^{ - 1}}{{\rm{m}}^{ - 2}}

    C

    C2Nm2{{\rm{C}}^2}{\rm{N}}{{\rm{m}}^2}

    D

    C2N1m2{{\rm{C}}^{ - 2}}{{\rm{N}}^{ - 1}}{{\rm{m}}^{ - 2}}

    Question Tags

    4.

    Dimensional formula for angular momentum is

    A

    ML2T2M{L^2}{T^{ - 2}}

    B

    ML2  T1M{L^2}\;{T^{ - 1}}

    C

    MLT1ML{T^{ - 1}}

    D

    M0L2T2{M^0}{L^2}{T^{ - 2}}

    Question Tags

    9.

    The dimensions of coefficient of self inductance are

    A

    [ML2T2A2]\left[ {{\rm{M}}{{\rm{L}}^2}{{\rm{T}}^{ - 2}}{{\rm{A}}^{ - 2}}} \right]

    B

    [ML2T2A1]\left[ {{\rm{M}}{{\rm{L}}^2}{{\rm{T}}^{ - 2}}{{\rm{A}}^{ - 1}}} \right]

    C

    [MLT2A2]  \left[ {{\rm{ML}}{{\rm{T}}^{ - 2}}{{\rm{A}}^{ - 2}}} \right]{\rm{\;}}

    D

    [MLT2A1]  \left[ {{\rm{ML}}{{\rm{T}}^{ - 2}}{{\rm{A}}^{ - 1}}} \right]{\rm{\;}}

    Question Tags

    10.

    The dimensions of permittivity ε0{\varepsilon _0} are

    A

    A2T2M1L3{A^2}{T^2}{M^{ - 1}}{L^{ - 3}}

    B

    A2T4M1L3{A^2}{T^4}{M^{ - 1}}{L^{ - 3}}

    C

    A2T4ML3{A^{ - 2}}{T^{ - 4}}M{L^3}

    D

    A2T4M1L3{A^2}{T^{ - 4}}{M^{ - 1}}{L^{ - 3}}

    Question Tags

    company logo