Related Questions

    1.

    If C be the capacitance and V be the electric potential, then the dimensional formula of CV2C{V^2} is

    A

    [ML3TA]\left[ {{\rm{M}}{{\rm{L}}^{ - 3}}{\rm{TA}}} \right]

    B

    [K0LT2A0]\left[ {{{\rm{K}}^0}{\rm{L}}{{\rm{T}}^{ - 2}}{{\rm{A}}^0}} \right]

    C

    [ML1T2A1]\left[ {{\rm{M}}{{\rm{L}}^1}{{\rm{T}}^{ - 2}}{{\rm{A}}^{ - 1}}} \right]

    D

    [ML2T2A0]\left[ {{\rm{M}}{{\rm{L}}^2}{{\rm{T}}^{ - 2}}{{\rm{A}}^0}} \right]

    Question Tags

    5.

    The dimensional formula for Boltzmann’s constant is

    A

    [ML2T2heta1]\left[ {M{L^2}{T^{ - 2}}{heta ^{ - 1}}} \right]

    B

    [ML2T2]\left[ {M{L^2}{T^{ - 2}}} \right]

    C

    [ML0T2heta1]\left[ {M{L^0}{T^{ - 2}}{heta ^{ - 1}}} \right]

    D

    [ML2T1heta1]\left[ {M{L^{ - 2}}{T^{ - 1}}{heta ^{ - 1}}} \right]

    Question Tags

    9.

    A suitable unit for gravitational constant is

    A

    kgmsec1kg - m\,\,se{c^{ - 1}}

    B

    N  m1secN\;{m^{ - 1}}{\rm{sec}}

    C

    N  m2  kg2N\;{m^2}\;k{g^{ - 2}}

    D

    kg  m  sec1kg\;m{\rm{\;se}}{{\rm{c}}^{ - 1}}

    Question Tags

    10.

    The dimensions of permittivity ε0{\varepsilon _0} are

    A

    A2T2M1L3{A^2}{T^2}{M^{ - 1}}{L^{ - 3}}

    B

    A2T4M1L3{A^2}{T^4}{M^{ - 1}}{L^{ - 3}}

    C

    A2T4ML3{A^{ - 2}}{T^{ - 4}}M{L^3}

    D

    A2T4M1L3{A^2}{T^{ - 4}}{M^{ - 1}}{L^{ - 3}}

    Question Tags

    company logo