Related Questions

    1.

    If force (F), mass (M), length (L) are taken as fundamental quantities, dimensions of the time will be

    A

    [MLF]\left[ {MLF} \right]

    B

    [MLF1]\left[ {ML{F^{ - 1}}} \right]

    C

    [M1/2L1/2F1/2]\left[ {{M^{1/2}}{L^{1/2}}{F^{1/2}}} \right]

    D

    [M1/2L1/2F1/2]\left[ {{M^{1/2}}{L^{1/2}}{F^{ - 1/2}}} \right]

    Question Tags

    3.

    The dimensional formula for Boltzmann’s constant is

    A

    [ML2T2heta1]\left[ {M{L^2}{T^{ - 2}}{heta ^{ - 1}}} \right]

    B

    [ML2T2]\left[ {M{L^2}{T^{ - 2}}} \right]

    C

    [ML0T2heta1]\left[ {M{L^0}{T^{ - 2}}{heta ^{ - 1}}} \right]

    D

    [ML2T1heta1]\left[ {M{L^{ - 2}}{T^{ - 1}}{heta ^{ - 1}}} \right]

    Question Tags

    7.

    The dimensions of power are

    A

    M1L2T3{M^1}{L^2}{T^{ - 3}}

    B

    M2L1T2{M^2}{L^1}{T^{ - 2}}

    C

    M1L2  T1{M^1}{L^2}\;{T^{ - 1}}

    D

    M1L1T2{M^1}{L^1}{T^{ - 2}}

    Question Tags

    9.

    The dimensional formula of 1ε0e2hc\frac{1}{{{\varepsilon _0}}}\frac{{{e^2}}}{{hc}} is

    A

    [M0L0T0A0]\left[ {{{\rm{M}}^0}{{\rm{L}}^0}{{\rm{T}}^0}{{\rm{A}}^0}} \right]

    B

    [M1L3T2A]\left[ {{{\rm{M}}^{ - 1}}{{\rm{L}}^3}{{\rm{T}}^2}{\rm{A}}} \right]

    C

    [ML3T4A2]\left[ {{\rm{M}}{{\rm{L}}^3}{{\rm{T}}^{ - 4}}{{\rm{A}}^{ - 2}}} \right]

    D

    [M1L3T4]\left[ {{{\rm{M}}^{ - 1}}{{\rm{L}}^{ - 3}}{{\rm{T}}^4}} \right]

    Question Tags

    company logo