1.

    If C is the capacitance and V is the potential, the dimensional formula for CV2C{V^2} is

    A

    [ML2T1]\left[ {{\rm{M}}{{\rm{L}}^2}{{\rm{T}}^{ - 1}}} \right]

    B

    [ML2T3]\left[ {{\rm{M}}{{\rm{L}}^{ - 2}}{{\rm{T}}^{ - 3}}} \right]

    C

    [ML2  T2]\left[ {{\rm{M}}{{\rm{L}}^2}{\rm{\;}}{{\rm{T}}^{ - 2}}} \right]

    D

    [ML2T2]\left[ {{\rm{M}}{{\rm{L}}^{ - 2}}{{\rm{T}}^{ - 2}}} \right]

    Question Tags

    Related Questions

    3.

    The dimensions of surface tension are

    A

    ML1T2M{L^{ - 1}}{T^{ - 2}}

    B

    MLT2ML{T^{ - 2}}

    C

    ML1T1M{L^{ - 1}}{T^{ - 1}}

    D

    MT2M{T^{ - 2}}

    Question Tags

    4.

    The dimensions of surface tension are

    A

    ML1T2M{L^{ - 1}}{T^{ - 2}}

    B

    MLT2ML{T^{ - 2}}

    C

    ML1T1M{L^{ - 1}}{T^{ - 1}}

    D

    MT2M{T^{ - 2}}

    Question Tags

    5.

    A suitable unit for gravitational constant is

    A

    kgmsec1kg - m\,\,se{c^{ - 1}}

    B

    N  m1secN\;{m^{ - 1}}{\rm{sec}}

    C

    N  m2  kg2N\;{m^2}\;k{g^{ - 2}}

    D

    kg  m  sec1kg\;m{\rm{\;se}}{{\rm{c}}^{ - 1}}

    Question Tags

    8.

    The dimensional formula for Boltzmann’s constant is

    A

    [ML2T2heta1]\left[ {M{L^2}{T^{ - 2}}{heta ^{ - 1}}} \right]

    B

    [ML2T2]\left[ {M{L^2}{T^{ - 2}}} \right]

    C

    [ML0T2heta1]\left[ {M{L^0}{T^{ - 2}}{heta ^{ - 1}}} \right]

    D

    [ML2T1heta1]\left[ {M{L^{ - 2}}{T^{ - 1}}{heta ^{ - 1}}} \right]

    Question Tags

    9.

    The dimensions of couple are

    A

    ML2T2M{L^2}{T^{ - 2}}

    B

    MLT2ML{T^{ - 2}}

    C

    ML1T3M{L^{ - 1}}{T^{ - 3}}

    D

    ML2T2M{L^{ - 2}}{T^{ - 2}}

    Question Tags

    10.

    The constant of proportionality 14πε0  \frac{1}{{4{\rm{\pi }}{{\rm{\varepsilon }}_0}}}\; in Coulomb’s law has the following units

    A

    C2Nm2{{\rm{C}}^{ - 2}}{\rm{N}}{{\rm{m}}^2}

    B

    C2N1m2{{\rm{C}}^2}{{\rm{N}}^{ - 1}}{{\rm{m}}^{ - 2}}

    C

    C2Nm2{{\rm{C}}^2}{\rm{N}}{{\rm{m}}^2}

    D

    C2N1m2{{\rm{C}}^{ - 2}}{{\rm{N}}^{ - 1}}{{\rm{m}}^{ - 2}}

    Question Tags

    company logo