1.

    The dimensional formula of universal gas constant is

    A

    [ML2T2heta1]\left[ {{\rm{M}}{{\rm{L}}^2}{{\rm{T}}^{ - 2}}{{\rm{heta }}^{ - 1}}} \right]

    B

    [M2LT2heta]\left[ {{{\rm{M}}^2}{\rm{L}}{{\rm{T}}^{ - 2}}{\rm{heta }}} \right]

    C

    [ML3T1heta1]\left[ {{\rm{M}}{{\rm{L}}^3}{{\rm{T}}^{ - 1}}{{\rm{heta }}^{ - 1}}} \right]

    D

    None of these

    Question Tags

    Related Questions

    3.

    The dimensional formula of 1ε0e2hc\frac{1}{{{\varepsilon _0}}}\frac{{{e^2}}}{{hc}} is

    A

    [M0L0T0A0]\left[ {{{\rm{M}}^0}{{\rm{L}}^0}{{\rm{T}}^0}{{\rm{A}}^0}} \right]

    B

    [M1L3T2A]\left[ {{{\rm{M}}^{ - 1}}{{\rm{L}}^3}{{\rm{T}}^2}{\rm{A}}} \right]

    C

    [ML3T4A2]\left[ {{\rm{M}}{{\rm{L}}^3}{{\rm{T}}^{ - 4}}{{\rm{A}}^{ - 2}}} \right]

    D

    [M1L3T4]\left[ {{{\rm{M}}^{ - 1}}{{\rm{L}}^{ - 3}}{{\rm{T}}^4}} \right]

    Question Tags

    7.

    The dimensions of permittivity ε0{\varepsilon _0} are

    A

    A2T2M1L3{A^2}{T^2}{M^{ - 1}}{L^{ - 3}}

    B

    A2T4M1L3{A^2}{T^4}{M^{ - 1}}{L^{ - 3}}

    C

    A2T4ML3{A^{ - 2}}{T^{ - 4}}M{L^3}

    D

    A2T4M1L3{A^2}{T^{ - 4}}{M^{ - 1}}{L^{ - 3}}

    Question Tags

    8.

    A suitable unit for gravitational constant is

    A

    kgmsec1kg - m\,\,se{c^{ - 1}}

    B

    N  m1secN\;{m^{ - 1}}{\rm{sec}}

    C

    N  m2  kg2N\;{m^2}\;k{g^{ - 2}}

    D

    kg  m  sec1kg\;m{\rm{\;se}}{{\rm{c}}^{ - 1}}

    Question Tags

    company logo