A chemist measures a reaction rate as 2.5imes10−32.5 imes 10^{-3}2.5imes10−3 mol L−1^{-1}−1 s−1s^{-1}s−1. Express this rate in molecules cm−3cm^{-3}cm−3 μs−1\mu s^{-1}μs−1 (molecules per cubic centimeter per microsecond). Avogadro's number = 6.022imes10236.022 imes 10^{23}6.022imes1023 molecules/mol.
1.5imes10121.5 imes 10^{12}1.5imes1012 molecules cm−3cm^{-3}cm−3 μs−1\mu s^{-1}μs−1
2.5imes10182.5 imes 10^{18}2.5imes1018 molecules cm−3cm^{-3}cm−3 μs−1\mu s^{-1}μs−1
1.5imes10151.5 imes 10^{15}1.5imes1015 molecules cm−3cm^{-3}cm−3 μs−1\mu s^{-1}μs−1
4.2imes10204.2 imes 10^{20}4.2imes1020 molecules cm−3cm^{-3}cm−3 μs−1\mu s^{-1}μs−1
Related Questions
The dimensional formula for Boltzmann’s constant is
[ML2T−2heta−1]\left[ {M{L^2}{T^{ - 2}}{heta ^{ - 1}}} \right][ML2T−2heta−1]
[ML2T−2]\left[ {M{L^2}{T^{ - 2}}} \right][ML2T−2]
[ML0T−2heta−1]\left[ {M{L^0}{T^{ - 2}}{heta ^{ - 1}}} \right][ML0T−2heta−1]
[ML−2T−1heta−1]\left[ {M{L^{ - 2}}{T^{ - 1}}{heta ^{ - 1}}} \right][ML−2T−1heta−1]
The dimensional formula for entropy is
[MLT−2K−1]\left[ {{\rm{ML}}{{\rm{T}}^{ - 2}}{{\rm{K}}^{ - 1}}} \right][MLT−2K−1]
[ML2T−2]\left[ {{\rm{M}}{{\rm{L}}^2}{{\rm{T}}^{ - 2}}} \right][ML2T−2]
[ML2T−2K−1]\left[ {{\rm{M}}{{\rm{L}}^2}{{\rm{T}}^{ - 2}}{{\rm{K}}^{ - 1}}} \right][ML2T−2K−1]
[ML−2T−2K−1]\left[ {M{L^{ - 2}}{T^{ - 2}}{K^{ - 1}}} \right][ML−2T−2K−1]