1.

    The dimensional formula of permeability of free space μ0\mu_0 is given by:

    A

    [MLT2A2][MLT^{-2}A^{-2}]

    B

    [ML1T2A2][ML^{-1}T^{-2}A^{-2}]

    C

    [MLT2A2][MLT^{-2}A^{2}]

    D

    [M1L1T2A2][M^{-1}L^{-1}T^{2}A^{2}]

    Question Tags

    Related Questions

    1.

    The dimensions of gravitational constant G and the moment of inertia are respectively

    A

    [ML3T2];[ML2T0]\left[ {{\rm{M}}{{\rm{L}}^3}{{\rm{T}}^{ - 2}}} \right];\left[ {{\rm{M}}{{\rm{L}}^2}{{\rm{T}}^0}} \right]

    B

    [M1L3T2];[ML2T0]\left[ {{{\rm{M}}^{ - 1}}{{\rm{L}}^3}{{\rm{T}}^{ - 2}}} \right];\left[ {{\rm{M}}{{\rm{L}}^2}{{\rm{T}}^0}} \right]

    C

    [M1L3T2];[M1L2T]\left[ {{{\rm{M}}^{ - 1}}{{\rm{L}}^3}{{\rm{T}}^{ - 2}}} \right];\left[ {{{\rm{M}}^{ - 1}}{{\rm{L}}^2}{\rm{T}}} \right]

    D

    [ML3T2];[M1L2T]\left[ {{\rm{M}}{{\rm{L}}^3}{{\rm{T}}^{ - 2}}} \right];\left[ {{{\rm{M}}^{ - 1}}{{\rm{L}}^2}{\rm{T}}} \right]

    Question Tags

    2.

    What are the dimensions of Planck's constant?

    A

    [MLT1][MLT^{-1}]

    B

    [ML2T1][ML^2T^{-1}]

    C

    [MLT2][MLT^{-2}]

    D

    [ML2T2][ML^2T^{-2}]

    Question Tags

    3.

    The dimensional formula for pressure is:

    A

    [MLT2][MLT^{-2}]

    B

    [ML1T2][ML^{-1}T^{-2}]

    C

    [ML2T2][ML^2T^{-2}]

    D

    [ML2T2][ML^{-2}T^{-2}]

    Question Tags

    6.

    If the velocity of light (C)\left( C \right) gravitational constant (G)\left( G \right) and Planck’s constant hh are chosen as fundamental units,then the dimensions of mass in new system is

    A

    C1/2G1/2h1/2{C^{1/2}}\,\,{G^{1/2}}\,\,{h^{1/2}}

    B

    C1/2G1/2h1/2{C^{1/2}}\,\,{G^{1/2}}\,\,{h^{ - 1/2}}

    C

    C1/2G1/2h1/2{C^{1/2}}\,\,{G^{ - 1/2}}\,\,{h^{1/2}}

    D

    C1/2G1/2h1/2{C^{ - 1/2}}\,\,{G^{1/2}}\,\,{h^{1/2}}

    Question Tags

    9.

    The dimensional formula of permeability of free space μ0\mu_0 is given by:

    A

    [MLT2A2][MLT^{-2}A^{-2}]

    B

    [ML1T2A2][ML^{-1}T^{-2}A^{-2}]

    C

    [MLT2A2][MLT^{-2}A^{2}]

    D

    [M1L1T2A2][M^{-1}L^{-1}T^{2}A^{2}]

    Question Tags

    company logo