1.

    If the velocity of light cc, gravitational constant GG, and Planck's constant hh are chosen as fundamental units, then the dimensions of mass in this system are:

    A

    [c1/2G1/2h1/2][c^{1/2}G^{-1/2}h^{1/2}]

    B

    [c1/2G1/2h1/2][c^{-1/2}G^{1/2}h^{1/2}]

    C

    [c1/2G1/2h1/2][c^{1/2}G^{1/2}h^{-1/2}]

    D

    [c1/2G1/2h1/2][c^{-1/2}G^{-1/2}h^{-1/2}]

    Question Tags

    Related Questions

    1.

    The dimensions of coefficient of viscosity are:

    A

    [MLT1][MLT^{-1}]

    B

    [ML1T1][ML^{-1}T^{-1}]

    C

    [MLT2][MLT^{-2}]

    D

    [ML1T2][ML^{-1}T^{-2}]

    Question Tags

    6.

    The dimensions of pressure are:

    A

    [MLT2]\left[ {ML{T^{ - 2}}} \right]

    B

    [ML1T2]\left[ {M{L^{ - 1}}{T^2}} \right]

    C

    [ML1T2]\left[ {M{L^{ - 1}}{T^{ - 2}}} \right]

    D

    [MLT2]\left[ {ML{T^2}} \right]

    Question Tags

    8.

    The dimensions of universal gravitational constant are

    A

    M2L2T2{M^{ - 2}}{L^2}{T^{ - 2}}

    B

    M1L3T2{M^{ - 1}}{L^3}{T^{ - 2}}

    C

    ML1T2M\,{L^{ - 1}}{T^{ - 2}}

    D

    ML2T2M\,{L^2}{T^{ - 2}}

    Question Tags

    9.

    If the force is given by F=at+bt2F = at + b{t^2} with t't' as time. The dimensions of aa and bb are

    A

    MLT4,MLT2ML{T^{ - 4}},ML{T^{ - 2}}

    B

    MLT3,MLT4ML{T^{ - 3}},ML{T^{ - 4}}

    C

    ML2T3,ML2T2M{L^2}{T^{ - 3}},M{L^2}{T^{ - 2}}

    D

    ML2T3,ML3T4M{L^2}{T^{ - 3}},M{L^3}{T^{ - 4}}

    Question Tags

    company logo