Sharpen your Physics skills with chapter-wise NEET practice questions. Designed for NEET aspirants, these questions cover all Physics topics.
NEET Questions / Physics
Three liquids of densities ρ1,ρ2{\rho _1},{\rho _2}ρ1,ρ2 and ρ3{\rho _3}ρ3 (with ρ1>ρ2>ρ3{\rho _1} > {\rho _2} > {\rho _3}ρ1>ρ2>ρ3), having the same value of surface tension T, rise to the same height in three identical capillaries. The angles of contact heta1,heta2 {heta _1},{heta _2}\,heta1,heta2 and heta3{heta _3}heta3 obey
π>heta1>heta2>heta3<π2\pi > {heta _1} > {heta _2} > {heta _3} < \frac{\pi }{2}π>heta1>heta2>heta3<2π
π2>heta1>heta2>heta3≥0\frac{\pi }{2} > {heta _1} > {heta _2} > {heta _3} \ge 02π>heta1>heta2>heta3≥0
0≤heta1<heta2<heta3<π20 \le {heta _1} < {heta _2} < {heta _3} < \frac{\pi }{2}0≤heta1<heta2<heta3<2π
π2<heta1>heta2>heta3<π\frac{\pi }{2} < {heta _1} > {heta _2} > {heta _3} < \pi 2π<heta1>heta2>heta3<π
Two non-mixing liquids of densities ρ and nρ (n > 1){\rm{\rho }}\,{\rm{and}}\,{\rm{n\rho }}\,{\rm{(n}}\,{\rm{ > }}\,{\rm{1)}}ρandnρ(n>1) are put in a container. The height of each liquid is h. A solid cylinder of length L and density d is put in this container. The cylinder floats with its axis vertical and length pL (p < 1) in the denser liquid. The density d is equal to:
{1 + (n + 1) p} ρ{\rm{\{ 1}}\,{\rm{ + }}\,{\rm{(n}}\,{\rm{ + }}\,{\rm{1)}}\,{\rm{p\} }}\,{\rm{\rho }}{1+(n+1)p}ρ
{2 + (n + 1) p} ρ{\rm{\{ 2}}\,{\rm{ + }}\,{\rm{(n}}\,{\rm{ + }}\,{\rm{1)}}\,{\rm{p\} }}\,{\rm{\rho }}{2+(n+1)p}ρ
{2 + (n − 1) p} ρ{\rm{\{ 2}}\,{\rm{ + }}\,{\rm{(n}}\,{\rm{ - }}\,{\rm{1)}}\,{\rm{p\} }}\,{\rm{\rho }}{2+(n−1)p}ρ
{1 + (n − 1) p} ρ{\rm{\{ 1}}\,{\rm{ + }}\,{\rm{(n}}\,{\rm{ - }}\,{\rm{1)}}\,{\rm{p\} }}\,{\rm{\rho }}{1+(n−1)p}ρ
A given sample of an ideal gas occupies a volume VVV at a pressure PPP and absolute temperature TTT. The mass of each molecule of the gas is mmm. Which of the following gives the density of the gas?
mkTmkTmkT
P/(kT)P/\left( {kT} \right)P/(kT)
Pm/(kT)Pm/\left( {kT} \right)Pm/(kT)
P/(kTV)P/\left( {kTV} \right)P/(kTV)
A uniform rope of length L and mass m1{{\rm{m}}_1}m1, hangs vertically from a rigid support. A block of mass m2{{\rm{m}}_2}m2 is attached to the free end of the rope. A transverse pulse of wavelength λ1{\lambda _1}λ1 is produced at the lower end of the rope. The wavelength of the pulse when it reaches the top of the rope is λ2{\lambda _2}λ2. The ratio λ2/λ1{\lambda _2}/{\lambda _1}λ2/λ1 is:
m1m2\sqrt {\frac{{{{\rm{m}}_1}}}{{{{\rm{m}}_2}}}} m2m1
m1+ m2m2\sqrt {\frac{{{{\rm{m}}_1} + \,{{\rm{m}}_2}}}{{{{\rm{m}}_2}}}} m2m1+m2
m1+ m2m1\sqrt {\frac{{{{\rm{m}}_1} + \,{{\rm{m}}_2}}}{{{{\rm{m}}_1}}}} m1m1+m2
Showing 801 to 804 of 804 entries