Related Questions

    2.

    Dimensional formula for force is

    A

    [M1L2Tβˆ’2]\left[ {{M^1}{L^2}{T^{ - 2}}} \right]

    B

    [M1L1Tβˆ’2]\left[ {{M^1}{L^1}{T^{ - 2}}} \right]

    C

    [M1Lβˆ’1Tβˆ’2β€…β€Š]\left[ {{M^1}{L^{ - 1}}{T^{ - 2}}\;} \right]

    D

    [M1Lβˆ’2Tβˆ’2]\left[ {{M^1}{L^{ - 2}}{T^{ - 2}}} \right]

    Question Tags

    3.

    The dimensions of farad are

    A

    Mβˆ’1Lβˆ’2T2Q2{M^{ - 1}}{L^{ - 2}}{T^2}{Q^2}

    B

    Mβˆ’1Lβˆ’2TQ{M^{ - 1}}{L^{ - 2}}TQ

    C

    Mβˆ’1Lβˆ’2Tβˆ’2Q{M^{ - 1}}{L^{ - 2}}{T^{ - 2}}Q

    D

    Mβˆ’1Lβˆ’2TQ2{M^{ - 1}}{L^{ - 2}}T{Q^2}

    Question Tags

    5.

    If force (F), mass (M), length (L) are taken as fundamental quantities, dimensions of the time will be

    A

    [MLF]\left[ {MLF} \right]

    B

    [MLFβˆ’1]\left[ {ML{F^{ - 1}}} \right]

    C

    [M1/2L1/2F1/2]\left[ {{M^{1/2}}{L^{1/2}}{F^{1/2}}} \right]

    D

    [M1/2L1/2Fβˆ’1/2]\left[ {{M^{1/2}}{L^{1/2}}{F^{ - 1/2}}} \right]

    Question Tags

    6.

    The power of lens is P=1f,β€…β€ŠP = \frac{1}{f},\; where f is focal length of the lens . The dimensions of power of lens are

    A

    [LTβˆ’2]\left[ {{\rm{L}}{{\rm{T}}^{ - 2}}} \right]

    B

    [M0Lβˆ’1T0]\left[ {{{\rm{M}}^0}{{\rm{L}}^{ - 1}}{{\rm{T}}^0}} \right]

    C

    [M0L0T0]\left[ {{{\rm{M}}^0}{{\rm{L}}^0}{{\rm{T}}^0}} \right]

    D

    None of these

    Question Tags

    company logo