Related Questions

    2.

    The dimensions of resistivity in terms of M,L,T and Q where Q stands for the dimensions of charge, is

    A

    ML3T1Q2M{L^3}{T^{ - 1}}{Q^{ - 2}}

    B

    ML3T2Q1M{L^3}{T^{ - 2}}{Q^{ - 1}}

    C

    ML2T1Q1M{L^2}{T^{ - 1}}{Q^{ - 1}}

    D

    MLT1Q1ML{T^{ - 1}}{Q^{ - 1}}

    Question Tags

    3.

    The physical quantities not having same dimensions are

    A

    Torque and work

    B

    Momentum and Planck’s constant

    C

    Stress and Young’s modules

    D

    Speed and (μ0ε0)1/2{\left( {{{\rm{\mu }}_0}{{\rm{\varepsilon }}_0}} \right)^{ - 1/2}}

    Question Tags

    8.

    A physical quantity of the dimensions of length that can be formed out of c, G and is [c is velocity of light, G is universal constant of gravitation and e is charge]

    A

    c2[Ge24πε0]1/2{c^2}{\left[ {G\frac{{{e^2}}}{{4\pi {\varepsilon _0}}}} \right]^{1/2}}

    B

    1c2[e2G4πε0]1/2\frac{1}{{{c^2}}}{\left[ {\frac{{{e^2}}}{{G4\pi {\varepsilon _0}}}} \right]^{1/2}}

    C

    1cGe24πε0\frac{1}{c}G\frac{{{e^2}}}{{4\pi {\varepsilon _0}}}

    D

    1c2[Ge24πε0]1/2\frac{1}{{{c^2}}}{\left[ {G\frac{{{e^2}}}{{4\pi {\varepsilon _0}}}} \right]^{1/2}}

    Question Tags

    9.

    If C be the capacitance and V be the electric potential, then the dimensional formula of CV2C{V^2} is

    A

    [ML3TA]\left[ {{\rm{M}}{{\rm{L}}^{ - 3}}{\rm{TA}}} \right]

    B

    [K0LT2A0]\left[ {{{\rm{K}}^0}{\rm{L}}{{\rm{T}}^{ - 2}}{{\rm{A}}^0}} \right]

    C

    [ML1T2A1]\left[ {{\rm{M}}{{\rm{L}}^1}{{\rm{T}}^{ - 2}}{{\rm{A}}^{ - 1}}} \right]

    D

    [ML2T2A0]\left[ {{\rm{M}}{{\rm{L}}^2}{{\rm{T}}^{ - 2}}{{\rm{A}}^0}} \right]

    Question Tags

    company logo