1.

    The dimensional formula for Planck’s constant (h) is

    A

    ML2T3M{L^{ - 2}}{T^{ - 3}}

    B

    ML2T2M{L^2}{T^{ - 2}}

    C

    ML2T1M{L^2}{T^{ - 1}}

    D

    ML2T2M{L^{ - 2}}{T^{ - 2}}

    Question Tags

    Related Questions

    5.

    The dimensions of coefficient of thermal conductivity is

    A

    ML2T2K1M{L^2}{T^{ - 2}}{K^{ - 1}}

    B

    MLT3K1ML{T^{ - 3}}{K^{ - 1}}

    C

    MLT2K1ML{T^{ - 2}}{K^{ - 1}}

    D

    MLT3KML{T^{ - 3}}K

    Question Tags

    6.

    The dimensional formula of the ratio of angular to linear momentum is

    A

    [M0LT0]\left[ {{{\rm{M}}^0}{\rm{L}}{{\rm{T}}^0}} \right]

    B

    [MLT]\left[ {{\rm{MLT}}} \right]

    C

    [ML2T1]\left[ {{\rm{M}}{{\rm{L}}^2}{{\rm{T}}^{ - 1}}} \right]

    D

    [M1L1T1]\left[ {{{\rm{M}}^{ - 1}}{{\rm{L}}^{ - 1}}{{\rm{T}}^{ - 1}}} \right]

    Question Tags

    7.

    The dimensions of resistivity in terms of M,L,T and Q where Q stands for the dimensions of charge, is

    A

    ML3T1Q2M{L^3}{T^{ - 1}}{Q^{ - 2}}

    B

    ML3T2Q1M{L^3}{T^{ - 2}}{Q^{ - 1}}

    C

    ML2T1Q1M{L^2}{T^{ - 1}}{Q^{ - 1}}

    D

    MLT1Q1ML{T^{ - 1}}{Q^{ - 1}}

    Question Tags

    9.

    The dimensional formula for Boltzmann’s constant is

    A

    [ML2T2heta1]\left[ {M{L^2}{T^{ - 2}}{heta ^{ - 1}}} \right]

    B

    [ML2T2]\left[ {M{L^2}{T^{ - 2}}} \right]

    C

    [ML0T2heta1]\left[ {M{L^0}{T^{ - 2}}{heta ^{ - 1}}} \right]

    D

    [ML2T1heta1]\left[ {M{L^{ - 2}}{T^{ - 1}}{heta ^{ - 1}}} \right]

    Question Tags

    10.

    A physical quantity of the dimensions of length that can be formed out of c, G and is [c is velocity of light, G is universal constant of gravitation and e is charge]

    A

    c2[Ge24πε0]1/2{c^2}{\left[ {G\frac{{{e^2}}}{{4\pi {\varepsilon _0}}}} \right]^{1/2}}

    B

    1c2[e2G4πε0]1/2\frac{1}{{{c^2}}}{\left[ {\frac{{{e^2}}}{{G4\pi {\varepsilon _0}}}} \right]^{1/2}}

    C

    1cGe24πε0\frac{1}{c}G\frac{{{e^2}}}{{4\pi {\varepsilon _0}}}

    D

    1c2[Ge24πε0]1/2\frac{1}{{{c^2}}}{\left[ {G\frac{{{e^2}}}{{4\pi {\varepsilon _0}}}} \right]^{1/2}}

    Question Tags

    company logo