1.

    What is the dimensional formula of mc2m{c^2}, where the letters have their usual meanings?

    A

    [MLT1]\left[ {{\rm{ML}}{{\rm{T}}^{ - 1}}} \right]

    B

    [ML0T0]\left[ {{\rm{M}}{{\rm{L}}^0}{{\rm{T}}^0}} \right]

    C

    [ML2T2]\left[ {{\rm{M}}{{\rm{L}}^2}{{\rm{T}}^{ - 2}}} \right]

    D

    [M1L3T6]\left[ {{{\rm{M}}^{ - 1}}{{\rm{L}}^3}{{\rm{T}}^6}} \right]

    Question Tags

    Related Questions

    1.

    Dimensional formula for the universal gravitational constant G is

    A

    [M1L2T2]\left[ {{{\rm{M}}^{ - 1}}{{\rm{L}}^2}{{\rm{T}}^{ - 2}}} \right]

    B

    [M0L0T0]\left[ {{{\rm{M}}^0}{{\rm{L}}^0}{{\rm{T}}^0}} \right]

    C

    [M1L3T2]\left[ {{{\rm{M}}^{ - 1}}{{\rm{L}}^3}{{\rm{T}}^{ - 2}}} \right]

    D

    [M1L3T1]\left[ {{{\rm{M}}^{ - 1}}{{\rm{L}}^3}{{\rm{T}}^{ - 1}}} \right]

    Question Tags

    2.

    The dimensions of universal gravitational constant are

    A

    M2L2T2{M^{ - 2}}{L^2}{T^{ - 2}}

    B

    M1L3T2{M^{ - 1}}{L^3}{T^{ - 2}}

    C

    ML1T2M{L^{ - 1}}{T^{ - 2}}

    D

    ML2T2M{L^2}{T^{ - 2}}

    Question Tags

    company logo