What is the dimensional formula of mc2m{c^2}mc2, where the letters have their usual meanings?
[MLT−1]\left[ {{\rm{ML}}{{\rm{T}}^{ - 1}}} \right][MLT−1]
[ML0T0]\left[ {{\rm{M}}{{\rm{L}}^0}{{\rm{T}}^0}} \right][ML0T0]
[ML2T−2]\left[ {{\rm{M}}{{\rm{L}}^2}{{\rm{T}}^{ - 2}}} \right][ML2T−2]
[M−1L3T6]\left[ {{{\rm{M}}^{ - 1}}{{\rm{L}}^3}{{\rm{T}}^6}} \right][M−1L3T6]
Related Questions
Dimensional formula for the universal gravitational constant G is
[M−1L2T−2]\left[ {{{\rm{M}}^{ - 1}}{{\rm{L}}^2}{{\rm{T}}^{ - 2}}} \right][M−1L2T−2]
[M0L0T0]\left[ {{{\rm{M}}^0}{{\rm{L}}^0}{{\rm{T}}^0}} \right][M0L0T0]
[M−1L3T−2]\left[ {{{\rm{M}}^{ - 1}}{{\rm{L}}^3}{{\rm{T}}^{ - 2}}} \right][M−1L3T−2]
[M−1L3T−1]\left[ {{{\rm{M}}^{ - 1}}{{\rm{L}}^3}{{\rm{T}}^{ - 1}}} \right][M−1L3T−1]
The dimensions of universal gravitational constant are
M−2L2T−2{M^{ - 2}}{L^2}{T^{ - 2}}M−2L2T−2
M−1L3T−2{M^{ - 1}}{L^3}{T^{ - 2}}M−1L3T−2
ML−1T−2M{L^{ - 1}}{T^{ - 2}}ML−1T−2
ML2T−2M{L^2}{T^{ - 2}}ML2T−2