1.

    Dimensional formula for the universal gravitational constant G is

    A

    [M1L2T2]\left[ {{{\rm{M}}^{ - 1}}{{\rm{L}}^2}{{\rm{T}}^{ - 2}}} \right]

    B

    [M0L0T0]\left[ {{{\rm{M}}^0}{{\rm{L}}^0}{{\rm{T}}^0}} \right]

    C

    [M1L3T2]\left[ {{{\rm{M}}^{ - 1}}{{\rm{L}}^3}{{\rm{T}}^{ - 2}}} \right]

    D

    [M1L3T1]\left[ {{{\rm{M}}^{ - 1}}{{\rm{L}}^3}{{\rm{T}}^{ - 1}}} \right]

    Question Tags

    Related Questions

    1.

    Coefficient of thermal conductivity has the dimensions

    A

    [MLT3K1]\left[ {{\rm{ML}}{{\rm{T}}^{ - 3}}{{\rm{K}}^{ - 1}}} \right]

    B

    [ML3T3K2]\left[ {{\rm{M}}{{\rm{L}}^3}{{\rm{T}}^3}{{\rm{K}}^2}} \right]

    C

    [ML3T3K2]\left[ {{\rm{M}}{{\rm{L}}^3}{{\rm{T}}^{ - 3}}{{\rm{K}}^{ - 2}}} \right]

    D

    [M2L3T3K2]\left[ {{{\rm{M}}^2}{{\rm{L}}^3}{{\rm{T}}^{ - 3}}{{\rm{K}}^2}} \right]

    Question Tags

    5.

    If force is proportional to square of velocity, then the dimensions of proportionality constant are

    A

    [ML1T]\left[ {{\rm{M}}{{\rm{L}}^{ - 1}}{\rm{T}}} \right]

    B

    [ML1T0]\left[ {{\rm{M}}{{\rm{L}}^{ - 1}}{{\rm{T}}^0}} \right]

    C

    [MLT0]\left[ {{\rm{ML}}{{\rm{T}}^0}} \right]

    D

    [M0LT1]\left[ {{{\rm{M}}^0}{\rm{L}}{{\rm{T}}^{ - 1}}} \right]

    Question Tags

    8.

    Dimensional formula for volume elasticity is

    A

    M1L2T2{M^1}{L^{ - 2}}{T^{ - 2}}

    B

    M1L3T2{M^1}{L^{ - 3}}{T^{ - 2}}

    C

    M1L2T2{M^1}{L^2}{T^{ - 2}}

    D

    M1L1T2{M^1}{L^{ - 1}}{T^{ - 2}}

    Question Tags

    9.

    The dimensional formula for the magnetic field is

    A

    [MT2A1]\left[ {{\rm{M}}{{\rm{T}}^{ - 2}}{{\rm{A}}^{ - 1}}} \right]

    B

    [ML2T1A2]\left[ {{\rm{M}}{{\rm{L}}^2}{{\rm{T}}^{ - 1}}{{\rm{A}}^{ - 2}}} \right]

    C

    [MT2A2]\left[ {{\rm{M}}{{\rm{T}}^{ - 2}}{{\rm{A}}^{ - 2}}} \right]

    D

    [MT1A2]\left[ {{\rm{M}}{{\rm{T}}^{ - 1}}{{\rm{A}}^{ - 2}}} \right]

    Question Tags

    company logo