The maximum static friction on a body is F=μNF = {\rm{\mu }}NF=μN. Here, N= normal reaction force on the body μ={\rm{\mu }} = μ= coefficient of static friction. The dimensions of μ are
[MLT−2]\left[ {{\rm{ML}}{{\rm{T}}^{ - 2}}} \right][MLT−2]
[M0L0T0heta−1]\left[ {{{\rm{M}}^0}{{\rm{L}}^0}{{\rm{T}}^0}{{\rm{heta }}^{ - 1}}} \right][M0L0T0heta−1]
Dimensionless
None of these
Related Questions
Dimensional formula for the universal gravitational constant G is
[M−1L2T−2]\left[ {{{\rm{M}}^{ - 1}}{{\rm{L}}^2}{{\rm{T}}^{ - 2}}} \right][M−1L2T−2]
[M0L0T0]\left[ {{{\rm{M}}^0}{{\rm{L}}^0}{{\rm{T}}^0}} \right][M0L0T0]
[M−1L3T−2]\left[ {{{\rm{M}}^{ - 1}}{{\rm{L}}^3}{{\rm{T}}^{ - 2}}} \right][M−1L3T−2]
[M−1L3T−1]\left[ {{{\rm{M}}^{ - 1}}{{\rm{L}}^3}{{\rm{T}}^{ - 1}}} \right][M−1L3T−1]
The dimensions of universal gravitational constant are
M−2L2T−2{M^{ - 2}}{L^2}{T^{ - 2}}M−2L2T−2
M−1L3T−2{M^{ - 1}}{L^3}{T^{ - 2}}M−1L3T−2
ML−1T−2M{L^{ - 1}}{T^{ - 2}}ML−1T−2
ML2T−2M{L^2}{T^{ - 2}}ML2T−2