Related Questions

    3.

    The dimensions of permittivity ε0{\varepsilon _0} are

    A

    A2T2M1L3{A^2}{T^2}{M^{ - 1}}{L^{ - 3}}

    B

    A2T4M1L3{A^2}{T^4}{M^{ - 1}}{L^{ - 3}}

    C

    A2T4ML3{A^{ - 2}}{T^{ - 4}}M{L^3}

    D

    A2T4M1L3{A^2}{T^{ - 4}}{M^{ - 1}}{L^{ - 3}}

    Question Tags

    7.

    The dimensions of emf in MKS is

    A

    [ML1T2Q2]\left[ {{\rm{M}}{{\rm{L}}^{ - 1}}{{\rm{T}}^{ - 2}}{{\rm{Q}}^{ - 2}}} \right]

    B

    [ML2T2Q2]\left[ {{\rm{M}}{{\rm{L}}^{ - 2}}{{\rm{T}}^{ - 2}}{{\rm{Q}}^{ - 2}}} \right]

    C

    [MLT2Q1]\left[ {{\rm{ML}}{{\rm{T}}^{ - 2}}{{\rm{Q}}^{ - 1}}} \right]

    D

    [ML2T2Q1]\left[ {{\rm{M}}{{\rm{L}}^2}{{\rm{T}}^{ - 2}}{{\rm{Q}}^{ - 1}}} \right]

    Question Tags

    8.

    A physical quantity of the dimensions of length that can be formed out of c, G and is [c is velocity of light, G is universal constant of gravitation and e is charge]

    A

    c2[Ge24πε0]1/2{c^2}{\left[ {G\frac{{{e^2}}}{{4\pi {\varepsilon _0}}}} \right]^{1/2}}

    B

    1c2[e2G4πε0]1/2\frac{1}{{{c^2}}}{\left[ {\frac{{{e^2}}}{{G4\pi {\varepsilon _0}}}} \right]^{1/2}}

    C

    1cGe24πε0\frac{1}{c}G\frac{{{e^2}}}{{4\pi {\varepsilon _0}}}

    D

    1c2[Ge24πε0]1/2\frac{1}{{{c^2}}}{\left[ {G\frac{{{e^2}}}{{4\pi {\varepsilon _0}}}} \right]^{1/2}}

    Question Tags

    10.

    The dimensional formula of modulus of rigidity is

    A

    [ML2T2]\left[ {{\rm{M}}{{\rm{L}}^{ - 2}}{{\rm{T}}^{ - 2}}} \right]

    B

    [ML3T2]\left[ {{\rm{M}}{{\rm{L}}^{ - 3}}{{\rm{T}}_2}} \right]

    C

    [ML2T2]\left[ {{\rm{M}}{{\rm{L}}^2}{{\rm{T}}^{ - 2}}} \right]

    D

    [ML1T2]\left[ {{\rm{M}}{{\rm{L}}^{ - 1}}{{\rm{T}}^{ - 2}}} \right]

    Question Tags

    company logo