1.

    A physical quantity of the dimensions of length that can be formed out of c, G and is [c is velocity of light, G is universal constant of gravitation and e is charge]

    A

    c2[Ge24πε0]1/2{c^2}{\left[ {G\frac{{{e^2}}}{{4\pi {\varepsilon _0}}}} \right]^{1/2}}

    B

    1c2[e2G4πε0]1/2\frac{1}{{{c^2}}}{\left[ {\frac{{{e^2}}}{{G4\pi {\varepsilon _0}}}} \right]^{1/2}}

    C

    1cGe24πε0\frac{1}{c}G\frac{{{e^2}}}{{4\pi {\varepsilon _0}}}

    D

    1c2[Ge24πε0]1/2\frac{1}{{{c^2}}}{\left[ {G\frac{{{e^2}}}{{4\pi {\varepsilon _0}}}} \right]^{1/2}}

    Question Tags

    Related Questions

    4.

    Dimensions of bulk modulus are

    A

    [M1LT2]\left[ {{{\rm{M}}^{ - 1}}{\rm{L}}{{\rm{T}}^{ - 2}}} \right]

    B

    [ML1T2]\left[ {{\rm{M}}{{\rm{L}}^{ - 1}}{{\rm{T}}^{ - 2}}} \right]

    C

    [ML2T2]\left[ {{\rm{M}}{{\rm{L}}^{ - 2}}{{\rm{T}}^{ - 2}}} \right]

    D

    [M2L2T1]\left[ {{{\rm{M}}^2}{{\rm{L}}^2}{{\rm{T}}^{ - 1}}} \right]

    Question Tags

    6.

    The dimensions of resistivity in terms of M,L,T and Q where Q stands for the dimensions of charge, is

    A

    ML3T1Q2M{L^3}{T^{ - 1}}{Q^{ - 2}}

    B

    ML3T2Q1M{L^3}{T^{ - 2}}{Q^{ - 1}}

    C

    ML2T1Q1M{L^2}{T^{ - 1}}{Q^{ - 1}}

    D

    MLT1Q1ML{T^{ - 1}}{Q^{ - 1}}

    Question Tags

    7.

    If force is proportional to square of velocity, then the dimensions of proportionality constant are

    A

    [ML1T]\left[ {{\rm{M}}{{\rm{L}}^{ - 1}}{\rm{T}}} \right]

    B

    [ML1T0]\left[ {{\rm{M}}{{\rm{L}}^{ - 1}}{{\rm{T}}^0}} \right]

    C

    [MLT0]\left[ {{\rm{ML}}{{\rm{T}}^0}} \right]

    D

    [M0LT1]\left[ {{{\rm{M}}^0}{\rm{L}}{{\rm{T}}^{ - 1}}} \right]

    Question Tags

    9.

    Dimension of R is

    A

    ML2T1M{L^2}{T^{ - 1}}

    B

    ML2T3A2M{L^2}{T^{ - 3}}{A^{ - 2}}

    C

    ML1T2M{L^{ - 1}}{T^{ - 2}}

    D

    None of these

    Question Tags

    company logo