A physical quantity of the dimensions of length that can be formed out of c, G and is [c is velocity of light, G is universal constant of gravitation and e is charge]
c2[Ge24πε0]1/2{c^2}{\left[ {G\frac{{{e^2}}}{{4\pi {\varepsilon _0}}}} \right]^{1/2}}c2[G4πε0e2]1/2
1c2[e2G4πε0]1/2\frac{1}{{{c^2}}}{\left[ {\frac{{{e^2}}}{{G4\pi {\varepsilon _0}}}} \right]^{1/2}}c21[G4πε0e2]1/2
1cGe24πε0\frac{1}{c}G\frac{{{e^2}}}{{4\pi {\varepsilon _0}}}c1G4πε0e2
1c2[Ge24πε0]1/2\frac{1}{{{c^2}}}{\left[ {G\frac{{{e^2}}}{{4\pi {\varepsilon _0}}}} \right]^{1/2}}c21[G4πε0e2]1/2
Related Questions
Dimensions of bulk modulus are
[M−1LT−2]\left[ {{{\rm{M}}^{ - 1}}{\rm{L}}{{\rm{T}}^{ - 2}}} \right][M−1LT−2]
[ML−1T−2]\left[ {{\rm{M}}{{\rm{L}}^{ - 1}}{{\rm{T}}^{ - 2}}} \right][ML−1T−2]
[ML−2T−2]\left[ {{\rm{M}}{{\rm{L}}^{ - 2}}{{\rm{T}}^{ - 2}}} \right][ML−2T−2]
[M2L2T−1]\left[ {{{\rm{M}}^2}{{\rm{L}}^2}{{\rm{T}}^{ - 1}}} \right][M2L2T−1]
Dimensional formula for volume elasticity is
M1L−2T−2{M^1}{L^{ - 2}}{T^{ - 2}}M1L−2T−2
M1L−3T−2{M^1}{L^{ - 3}}{T^{ - 2}}M1L−3T−2
M1L2T−2{M^1}{L^2}{T^{ - 2}}M1L2T−2
M1L−1T−2{M^1}{L^{ - 1}}{T^{ - 2}}M1L−1T−2