1.

    A physical quantity of the dimensions of length that can be formed out of c, G and is [c is velocity of light, G is universal constant of gravitation and e is charge]

    A

    c2[Ge24πε0]1/2{c^2}{\left[ {G\frac{{{e^2}}}{{4\pi {\varepsilon _0}}}} \right]^{1/2}}

    B

    1c2[e2G4πε0]1/2\frac{1}{{{c^2}}}{\left[ {\frac{{{e^2}}}{{G4\pi {\varepsilon _0}}}} \right]^{1/2}}

    C

    1cGe24πε0\frac{1}{c}G\frac{{{e^2}}}{{4\pi {\varepsilon _0}}}

    D

    1c2[Ge24πε0]1/2\frac{1}{{{c^2}}}{\left[ {G\frac{{{e^2}}}{{4\pi {\varepsilon _0}}}} \right]^{1/2}}

    Question Tags

    Related Questions

    1.

    Dimensions of bulk modulus are

    A

    [M1LT2]\left[ {{{\rm{M}}^{ - 1}}{\rm{L}}{{\rm{T}}^{ - 2}}} \right]

    B

    [ML1T2]\left[ {{\rm{M}}{{\rm{L}}^{ - 1}}{{\rm{T}}^{ - 2}}} \right]

    C

    [ML2T2]\left[ {{\rm{M}}{{\rm{L}}^{ - 2}}{{\rm{T}}^{ - 2}}} \right]

    D

    [M2L2T1]\left[ {{{\rm{M}}^2}{{\rm{L}}^2}{{\rm{T}}^{ - 1}}} \right]

    Question Tags

    2.

    Dimensional formula for volume elasticity is

    A

    M1L2T2{M^1}{L^{ - 2}}{T^{ - 2}}

    B

    M1L3T2{M^1}{L^{ - 3}}{T^{ - 2}}

    C

    M1L2T2{M^1}{L^2}{T^{ - 2}}

    D

    M1L1T2{M^1}{L^{ - 1}}{T^{ - 2}}

    Question Tags

    company logo