Related Questions

    2.

    If the velocity v(isβ€…β€Šcmsβˆ’1)v\left( {{\rm{is\;cm}}{{\rm{s}}^{ - 1}}} \right) of a particle is given in terms of t (in second) by the relation β€…β€Šβ€…β€Šv=at+bt+c\;\;v = at + \frac{b}{{t + c}} then, the dimensions of a,b and c are

    A

    a =Β [L]β€…β€Š\left[ {\rm{L}} \right]{\rm{\;}}, b =Β β€…β€Š[LT]{\rm{\;}}\left[ {{\rm{LT}}} \right], c =Β [T2]\left[ {{{\rm{T}}^2}} \right]

    B

    a =Β [L2]\left[ {{{\rm{L}}^2}} \right], b =Β [T]β€…β€Š\left[ {\rm{T}} \right]{\rm{\;}}, c =Β [LTβˆ’2]\left[ {{\rm{L}}{{\rm{T}}^{ - 2}}} \right]Β 

    C

    a =Β [LT2]\left[ {{\rm{L}}{{\rm{T}}^2}} \right], b =Β [LT]\left[ {{\rm{LT}}} \right], c =Β [L]\left[ {\rm{L}} \right]

    D

    a =Β [LTβˆ’2]\left[ {{\rm{L}}{{\rm{T}}^{ - 2}}} \right], b =Β [L]β€…β€Š\left[ {\rm{L}} \right]{\rm{\;}}, c =Β [T]\left[ {\rm{T}} \right]

    Question Tags

    3.

    Which of these is a limitation of dimensional analysis?

    A

    It can be used to convert units.

    B

    It can check the correctness of an equation.

    C

    It cannot determine the nature of a physical quantity if it depends on more than three fundamental dimensions.

    D

    It can derive relationships between physical quantities.

    Question Tags

    4.

    If the velocity v(isβ€…β€Šcmsβˆ’1)v\left( {{\rm{is\;cm}}{{\rm{s}}^{ - 1}}} \right) of a particle is given in terms of t (in second) by the relation β€…β€Šβ€…β€Šv=at+bt+c\;\;v = at + \frac{b}{{t + c}} then, the dimensions of a,b and c are

    A

    a =Β [L]β€…β€Š\left[ {\rm{L}} \right]{\rm{\;}}, b =Β β€…β€Š[LT]{\rm{\;}}\left[ {{\rm{LT}}} \right], c =Β [T2]\left[ {{{\rm{T}}^2}} \right]

    B

    a =Β [L2]\left[ {{{\rm{L}}^2}} \right], b =Β [T]β€…β€Š\left[ {\rm{T}} \right]{\rm{\;}}, c =Β [LTβˆ’2]\left[ {{\rm{L}}{{\rm{T}}^{ - 2}}} \right]Β 

    C

    a =Β [LT2]\left[ {{\rm{L}}{{\rm{T}}^2}} \right], b =Β [LT]\left[ {{\rm{LT}}} \right], c =Β [L]\left[ {\rm{L}} \right]

    D

    a =Β [LTβˆ’2]\left[ {{\rm{L}}{{\rm{T}}^{ - 2}}} \right], b =Β [L]β€…β€Š\left[ {\rm{L}} \right]{\rm{\;}}, c =Β [T]\left[ {\rm{T}} \right]

    Question Tags

    8.

    Dimensional analysis can be used to:

    A

    Determine the exact value of gravitational constant

    B

    Check the dimensional homogeneity of an equation

    C

    Find the value of trigonometric functions in an equation

    D

    Derive the exact equation for a physical phenomenon

    Question Tags

    9.

    Dimensional analysis can help in deriving relationships between physical quantities. However, it cannot:

    A

    Check the homogeneity of physical equations

    B

    Convert units from one system to another

    C

    Deduce the dimensions of a physical quantity

    D

    Distinguish between two physical quantities having the same dimensions

    Question Tags

    company logo