Which limitation of dimensional analysis prevents it from deriving the complete formula for the viscous force on a sphere moving through a fluid, given that the force (F) depends on the radius (r) of the sphere, its velocity (v), and the fluid's viscosity ()?
It cannot determine the numerical constant in Stokes' Law.
It fails to account for the turbulent flow regime.
It cannot handle the non-linear dependence on velocity at high Reynolds numbers.
It requires the density of the fluid, which is not provided.
Related Questions
Which limitation of dimensional analysis prevents it from deriving the complete formula for the viscous force on a sphere moving through a fluid, given that the force (F) depends on the radius (r) of the sphere, its velocity (v), and the fluid's viscosity ()?
It cannot determine the numerical constant in Stokes' Law.
It fails to account for the turbulent flow regime.
It cannot handle the non-linear dependence on velocity at high Reynolds numbers.
It requires the density of the fluid, which is not provided.