Related Questions

    1.

    Consider a circular ring of radius rr, uniformly charged with linear charge density λ\lambda. Find the electric potential at a point on the axis at a distance xx from the centre of the ring. Using this expression for the potential, find the electric field at this point.

    A

    rλxε0(x2+r2)3/2\frac{r \lambda x}{\varepsilon_0\left(x^2+r^2\right)^{3 / 2}}

    B

    2rλx2ε0(x2+r2)3/2\frac{2r \lambda x}{2 \varepsilon_0\left(x^2+r^2\right)^{3 / 2}}

    C

    rλx4ε0(x2+r2)3/2\frac{r \lambda x}{4 \varepsilon_0\left(x^2+r^2\right)^{3 / 2}}

    D

    rλx2ε0(x2+r2)3/2\frac{r \lambda x}{2 \varepsilon_0\left(x^2+r^2\right)^{3 / 2}}

    Question Tags

    8.

    If 7 charge qq are placed at corners of cube of edge length 3 m\sqrt{3} \mathrm{~m} then find potential at centre of cube:

    A

    6q7πε0\frac{6 q}{7 \pi \varepsilon_0}

    B

    7q6πε0\frac{7 q}{6 \pi \varepsilon_0}

    C

    73qπε0\frac{7 \sqrt{3} q}{\pi \varepsilon_0}

    D

    q7πε0\frac{q}{7 \pi \varepsilon_0}

    Question Tags

    company logo